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Introduction to mantle convection & plate tectonics

Main open questions:
I Energy dissipation in hinge zones
I Main drivers of plate motion:

negative buoyancy forces or
convective shear traction

I Role of slab geometries
I Accuracy of rheology

extrapolations from experiments

I Mantle convection is the thermal
convection in the Earth’s upper
∼3000 km

I It controls the thermal and
geological evolution of the Earth

I Solid rock in the mantle moves
like viscous incompressible fluid on
time scales of millions of years
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Our research target:

Global simulation of the
Earth’s mantle convection & associated plate tectonics with

realistic parameters & resolutions down to faulted plate boundaries.

Effective viscosity field and adaptive mesh resolving narrow plate boundaries (shown in red).
(Visualization by L. Alisic)
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Earth’s mantle flow, modeled as a nonlinear Stokes system

−∇ ·
[
µ(T ,u) (∇u +∇u>)

]
+∇p = f (T )

∇ · u = 0

u . . . velocity
p . . . pressure
T . . . temperature
µ . . . viscosity

Effective viscosity field and adaptive mesh resolving narrow plate boundaries (shown in red).
(Visualization by L. Alisic)
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Solver challenges

What causes the demand for scalable solvers for high-order discretizations on
adaptive grids? — The severe nonlinearity, heterogeneity & anisotropy of the
Earth’s rheology:

I Up to 6 orders of magnitude viscosity contrast; sharp viscosity gradients
due to decoupling at plate boundaries

I Wide range of spatial scales and highly localized features w.r.t. Earth
radius (∼6371 km): plate thickness ∼50 km & shearing zones at plate
boundaries ∼5 km

I Desired resolution of ∼1 km results in O(1012) degrees of freedom on a
uniform mesh of Earth’s mantle, so adaptive mesh refinement is essential

I Demand for high accuracy leads to high-order discretizations
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Summary of main results

I. Efficient methods/algorithms

I High-order finite elements
I Adaptive meshes, resolving

viscosity variations
I Geometric multigrid (GMG)

preconditioners for elliptic
operators

I Novel GMG based BFBT/LSC
pressure Schur complement
preconditioner

I Inexact Newton-Krylov method
I H−1-norm for velocity residual

in Newton line search

II. Scalable parallel implementation
I Matrix-free stiffness/mass

application and GMG smoothing
I Tensor product structure of

finite element shape functions
I Octree algorithms for handling

adaptive meshes in parallel
I Algebraic multigrid (AMG) only

as coarse solver for GMG avoids
full AMG setup cost and large
matrix assembly

I Parallel scalability results up to
16,384 CPU cores (MPI)
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Results covered in this talk

I. Efficient methods/algorithms

I High-order finite elements
I Adaptive meshes, resolving

viscosity variations
I Geometric multigrid (GMG)

preconditioners for elliptic
operators

I Novel GMG based BFBT/LSC
pressure Schur complement
preconditioner

I Inexact Newton-Krylov method
I H−1-norm for velocity residual

in Newton line search

II. Scalable parallel implementation
I Matrix-free stiffness/mass

application and GMG smoothing
I Tensor product structure of

finite element shape functions
I Octree algorithms for handling

adaptive meshes in parallel
I Algebraic multigrid (AMG) only

as coarse solver for GMG avoids
full AMG setup cost and large
matrix assembly

I Parallel scalability results up to
16,384 CPU cores (MPI)
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Scalable parallel Stokes solver
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Parallel octree-based adaptive mesh refinement (p4est)

I Identify octree leaves with hexahedral elements
I Octree structure enables fast parallel adaptive

octree/mesh refinement and coarsening
I Octrees and space filling curves enable fast

neighbor search, repartitioning, and 2 : 1
balancing in parallel

I Algebraic constraints on non-conforming
element faces with hanging nodes enforce
global continuity of the velocity basis functions

I Demonstrated scalability to O(500K) cores
(MPI)
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High-order finite element discretization of the
Stokes system

−∇ ·
[
µ (∇u +∇u>)

]
+∇p = f

∇ · u = 0

discretize−−−−−→
[
A B>
B 0

] [
u
p

]
=
[

f
0

]

I High-order finite element shape functions
I Inf-sup stable velocity-pressure pairings: Qk × Pdisc

k−1 with 2 ≤ k
I Locally mass conservative due to discontinuous pressure space
I Fast, matrix-free application of stiffness and mass matrices
I Hexahedral elements allow exploiting the tensor product structure of

basis functions for a high floating point to memory operations ratio
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Linear solver: Preconditioned Krylov subspace method
Fully coupled iterative solver: GMRES with upper triangular block
preconditioning [

A B>
B 0

]
︸ ︷︷ ︸
Stokes operator

[
Ã B>
0 −S̃

]−1

︸ ︷︷ ︸
preconditioner

[
u′
p′

]
=
[

f
0

]

Approximating the inverse, Ã−1 ≈ A−1, is well suited for multigrid.
Inverse Schur complement approximation, S̃−1 ≈ S−1 := (BA−1B>)−1,
with improved BFBT / Least Squares Commutator (LSC) method:

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1

with diagonal scaling, D := diag(A). Here, approximating the inverse of
the discrete pressure Laplacian, (BD−1B>), is well suited for multigrid.
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Stokes solver robustness with scaled BFBT
Schur complement approximation
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Stokes solver robustness with scaled BFBT
Schur complement approximation

The subducting plate model problem on a cross section of the spherical
Earth domain serves as a benchmark for solver robustness.

Subduction model viscosity field.

Multigrid parameters:
GMG for Ã: 1 V-cycle,
3+3 smooth
AMG (PETSc’s GAMG) for
(BD−1B>): 3 V-cycles,
3+3 smooth
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Robustness with respect to plate coupling strength
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Convergence for solving Au = f (red), Stokes system with BFBT (blue), Stokes
system with viscosity weighted mass matrix as Schur complement approximation
(green) for comparison to conventional preconditioning.
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Robustness with respect to plate boundary thickness
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2 km

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES
restart

GMRES iteration

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
ia

l 
re

s
id

u
a
l|
|

 

 

2km_viscous_stress

2km_Stokes_with_BFBT

2km_Stokes_with_mass

Convergence for solving Au = f (red), Stokes system with BFBT (blue), Stokes
system with viscosity weighted mass matrix as Schur complement approximation
(green) for comparison to conventional preconditioning.
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Parallel adaptive high-order geometric multigrid
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Parallel adaptive high-order geometric multigrid
The multigrid hierarchy of nested meshes is generated from an adaptively
refined octree-based mesh via geometric coarsening:

I Parallel repartitioning of coarser meshes for load-balancing; repartitioning
of sufficiently coarse meshes on subsets of cores

I High-order L2-projection of coefficients onto coarser levels;
re-discretization of differential eqn’s at coarser geometric multigrid levels

Multigrid hierarchy of viscous stress Ã

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4 direct solve

Multigrid for pressure Laplacian:
Geometric multigrid for the pressure
Laplacian is problematic due to the

discontinuous modal pressure
discretization Pdisc

k−1.
Here, a novel approach is taken by
re-discretizing with continuous nodal

Qk basis functions.
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Parallel adaptive high-order geometric multigrid
The multigrid hierarchy of nested meshes is generated from an adaptively
refined octree-based mesh via geometric coarsening:

I Parallel repartitioning of coarser meshes for load-balancing; repartitioning
of sufficiently coarse meshes on subsets of cores

I High-order L2-projection of coefficients onto coarser levels;
re-discretization of differential eqn’s at coarser geometric multigrid levels

Multigrid hierarchy of viscous stress Ã

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4 direct solve

Multigrid hierarchy of pressure Laplacian

smoothing with (BD−1B>)0 0

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4 direct solve
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Parallel adaptive high-order geometric multigrid
GMG smoother: Chebyshev accelerated Jacobi (PETSc) with matrix-free
high-order stiffness apply, assembly of high-order diagonal only.
GMG restriction & interpolation: High-order L2-projection; restriction and
interpolation operators are adjoints of each other in L2-sense.
No collective communication in GMG cycles needed; as the coarse solver for
GMG, AMG (PETSc’s GAMG) is invoked on only small core counts.

Multigrid hierarchy of viscous stress Ã

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4 direct solve

Multigrid hierarchy of pressure Laplacian

smoothing with (BD−1B>)0 0

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4 direct solve
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Parallel adaptive high-order geometric multigrid
GMG smoother for (BD−1B>), discontinuous modal: Chebyshev
accelerated Jacobi (PETSc) with matrix-free apply and assembled diagonal.
GMG restriction & interpolation for (BD−1B>): L2-projection between
discontinuous modal and continuous nodal spaces.
No collective communication in GMG cycles needed; as the coarse solver for
GMG, AMG (PETSc’s GAMG) is invoked on only small core counts.

Multigrid hierarchy of pressure Laplacian

smoothing with (BD−1B>)0 0

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4 direct solve
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Convergence dependence on mesh size and
discretization order
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h-dependence using geometric multigrid for
Ã and (BD−1B>)

The mesh is increasingly refined while the
discretization stays fixed to Q2 × Pdisc

1 .
(Multigrid parameters:
GMG for Ã: 1 V-cycle, 3+3 smoothing;
GMG for (BD−1B>): 1 V-cycle, 3+3 smoothing)

Solve Au = f
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Solve Stokes system
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p-dependence using geometric multigrid for
Ã and (BD−1B>)

The discretization order of the finite element space
increases while the mesh stays fixed.
(Multigrid parameters:
GMG for Ã: 1 V-cycle, 3+3 smoothing;
GMG for (BD−1B>): 1 V-cycle, 3+3 smoothing)

Solve Au = f
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Remark: The deteriorating Stokes convergence with increasing order is due to a deteriorating
approximation of the Schur complement by the BFBT method and not the multigrid
components.
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Parallel scalability of geometric multigrid
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Global problem on adaptive mesh of the Earth

I Viscosity is generated from real Earth data
I Heterogeneous viscosity field exhibits

6 orders of magnitude variation
I Adaptively refined mesh (p4est library)

down to ∼0.5 km local resolution;
Q2 × Pdisc

1 discretization
I Distributed memory parallelization (MPI)

Stampede at the Texas Advanced Computing Center
16 CPU cores per node (2 × 8 core Intel Xeon E5-2680)
32GB main memory per node (8 × 4GB DDR3-1600MHz)
6,400 nodes, 102,400 cores total, InfiniBand FDR network
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Weak scalability using adaptively refined Earth mesh
Normalized time∗ based on the setup and
solve times for solving for velocity u in:

Au = f

Normalized time∗ based on the setup and
solve times for solving for pressure p in:(

BD−1B>
)

p = g

2048 4096 8192 16384
0

0.5

1

1.5
1

1.2
0.97 0.931

1.24 1.15
1.34

number of cores

Normalized time∗ relative to 2048 cores

T/(N/P) T/(N/P)/G

2048 4096 8192 16384
0

0.5

1

1.5
1

0.83 0.84
0.64

1 1.09 1.08 1.18

number of cores

Normalized time∗ relative to 2048 cores

T/(N/P) T/(N/P)/G

∗Normalization explanation:
Scalability of algorithms & implementation: T/(N/P)
Scalability of implementation: T/(N/P)/G

T . . . setup+ solve time
N . . . degrees of freedom (DOF)
P . . . number of CPU cores
G . . . number of GMRES iterations
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Weak scalability using adaptively refined Earth mesh
Normalized time∗ based on the setup and
solve times for solving for velocity u in:

Au = f

Normalized time∗ based on the setup and
solve times for solving for pressure p in:(

BD−1B>
)

p = g

2048 4096 8192 16384
0

0.5

1

1.5
1

1.2
0.97 0.931

1.24 1.15
1.34

number of cores

Normalized time∗ relative to 2048 cores

T/(N/P) T/(N/P)/G

2048 4096 8192 16384
0

0.5

1

1.5
1

0.83 0.84
0.64

1 1.09 1.08 1.18

number of cores

Normalized time∗ relative to 2048 cores

T/(N/P) T/(N/P)/G

velocity
DOF

#levels
geo,alg

setup time
geo,alg,tot

solve
time #iter

2K 637M 7, 4 10, 14, 25 2298 402
4K 1155M 7, 4 13, 29, 41 2483 389
8K 2437M 8, 4 15, 16, 31 2130 339
16K 5371M 8, 4 29, 51, 80 2198 279

pressure
DOF

#levels
geo,alg

setup time
geo,alg,tot

solve
time #iter

2K 125M 7, 3 11, 1, 12 857 125
4K 227M 7, 4 12, 2, 15 638 95
8K 482M 8, 3 18, 2, 20 684 97
16K 1042M 8, 4 27, 9, 36 546 68
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Strong scalability using fixed adaptive Earth mesh
Efficiency based on the setup and solve
times for solving for velocity u in:

Au = f

Efficiency based on the setup and solve
times for solving for pressure p in:(

BD−1B>
)

p = g

2K 4K 8K 16K
0

0.5

1 1
0.85

0.59 0.5

number of cores

Efficiency rel. to 2K

4K 8K 16K
0

0.5

1 1 0.91
0.68

number of cores

Efficiency rel. to 4K

2K 4K 8K 16K
0

0.5

1 1 0.88 0.81 0.69

number of cores

Efficiency rel. to 2K

4K 8K 16K
0

0.5

1 1
0.72

0.57

number of cores

Efficiency rel. to 4K

Problem size: 637M
#iterations: 401 (±1)

setup time
geo,alg,tot

solve
time

2K 10, 14, 25 2298
4K 9, 16, 25 1328
8K 13, 27, 40 938

16K 11, 24, 36 545

Problem size: 1155M
#iterations: 388 (±1)

setup time
geo,alg,tot

solve
time

2K — —
4K 13, 29, 41 2483
8K 10, 39, 49 1326
16K 17, 48, 65 859

Problem size: 125M
#iterations: 125 (±2)

setup time
geo,alg,tot

solve
time

2K 11, 1, 12 857
4K 8, 1, 9 487
8K 8, 2, 9 256

16K 8, 2, 10 148

Problem size: 227M
#iterations: 96 (±1)

setup time
geo,alg,tot

solve
time

2K — —
4K 12, 2, 15 638
8K 17, 10, 27 431

16K 14, 4, 18 269
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Scalable nonlinear Stokes solver:
Inexact Newton-Krylov method
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Inexact Newton-Krylov method

Newton update (ũ, p̃): −∇ ·
[
µ′(T ,u) (∇ũ +∇ũ>)

]
+∇p̃ = −rmom

∇ · ũ = −rmass

I Newton update is computed inexactly via Krylov subspace iterative
method

I Krylov tolerance decreases with subsequent Newton steps to
guarantee superlinear convergence

I Number of Newton steps is independent of the mesh size
I Velocity residual is measured in H−1-norm for backtracking line

search; this avoids overly conservative update steps � 1
I Grid continuation at initial Newton steps: Adaptive mesh refinement

to resolve increasing viscosity variations arising from the nonlinear
dependence on the velocity
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Inexact Newton-Krylov method

Convergence of inexact Newton-Krylov (4096 cores)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
−12

10
−9

10
−6

10
−3

10
0

1
2

3
4 5

6

7
8

9
1011

12
13

1415
16

17
18

19
20

21
2223

242526

27

GMRES iteration

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
ia

l 
re

s
id

u
a
l|
|

 

 

nonlinear residual

Krylov residual

Plate velocities at
nonlinear solution.

Adaptive mesh refinements after the first four Newton steps are indicated
by black vertical lines. 642M velocity & pressure DOF at solution,
473 min total runtime on 4096 cores.
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Thank you
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Summary of main results

I. Efficient methods/algorithms

I High-order finite elements
I Adaptive meshes, resolving

viscosity variations
I Geometric multigrid (GMG)

preconditioners for elliptic
operators

I Novel GMG based BFBT/LSC
pressure Schur complement
preconditioner

I Inexact Newton-Krylov method
I H−1-norm for velocity residual

in Newton line search

II. Scalable parallel implementation
I Matrix-free stiffness/mass

application and GMG smoothing
I Tensor product structure of

finite element shape functions
I Octree algorithms for handling

adaptive meshes in parallel
I Algebraic multigrid (AMG) only

as coarse solver for GMG avoids
full AMG setup cost and large
matrix assembly

I Parallel scalability results up to
16,384 CPU cores (MPI)
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